Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration.
نویسندگان
چکیده
Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided tissue and bone regeneration membrane, fabricated by solvent casting. The CHT/BG-NP nanocomposite membranes are characterized in terms of water uptake, in mechanical tests, under simulated physiological conditions and in in vitro bioactivity tests. The addition of BG-NPs to CHT membranes decreased the mechanical potential of these membranes, but on the other hand the bioactivity improved. The membranes containing the BG-NPs induced the precipitation of bone-like apatite in simulated body fluid (SBF). Biological tests were carried out using human periodontal ligament cells and human bone marrow stromal cells. CHT/BG-NP composite membranes promoted cell metabolic activity and mineralization. The results indicate that the CHT/BG-NP composite membrane could potentially be used as a temporary guided tissue regeneration membrane in periodontal regeneration, with the possibility to induce bone regeneration.
منابع مشابه
Preparation and In Vitro Biological Evaluation of Octacalcium Phosphate/Bioactive Glass-Chitosan/ Alginate Composite Membranes Potential for Bone Guided Regeneration.
The chitosan/alginate-trace element-codoped octacalcium phosphate/nano-sized bioactive glass (CS/ALG-teOCP/nBG) composite membranes were prepared by a layer-by-layer coating method for the functional requirement of guided bone regeneration (GBR). The morphology, mechanical properties and moisture content of the membranes was studied by scanning electron microscopy (SEM) observation, mechanical ...
متن کاملSynthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes
The tissue engineering strategy is a new approach for the regeneration of cementum, which is essential for the regeneration of the periodontal tissue. This strategy involves the cell cultures present in this tissue, called cementoblasts, and located on an appropriate substrate for posterior implantation in the regeneration site. Prior studies from our research group have shown that the prolifer...
متن کاملBiomaterials for periodontal regeneration
Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. ...
متن کاملChitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis.
A new family of biodegradable polymer/bioactive glass (BG) composite materials has emerged based on the availability of nano-sized bioactive particles. Such novel biocomposites can have enhanced performance, in terms of mechanical properties and bioactivity, and they can be designed to be used in bone regeneration approaches. In this work, membranes of chitosan (CTS) and chitosan with bioactive...
متن کاملElectrospun F18 Bioactive Glass/PCL—Poly (ε-caprolactone)—Membrane for Guided Tissue Regeneration
Barrier membranes that are used for guided tissue regeneration (GTR) therapy usually lack bioactivity and the capability to promote new bone tissue formation. However, the incorporation of an osteogenic agent into polymeric membranes seems to be the most assertive strategy to enhance their regenerative potential. Here, the manufacturing of composite electrospun membranes made of poly (ε-caprola...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2012